##plugins.themes.bootstrap3.article.main##

Rudy Tantowi
Calvin Calvin
Saut Dohot Siregar

Abstract

The COVID-19 pandemic crisis resulted in the accumulation of extensive epidemiological data that demanded the implementation of advanced visualization techniques to support community health surveillance systems. This research adopts the Tableau platform in the development of a dynamic dashboard for a holistic examination of COVID-19 data. A quantitative-descriptive methodological approach was applied using secondary databases from global repositories covering parameters of cases, fatalities, morbidity, and territorial distribution. The construction of the dashboard consolidates chronological-geographical visualization, predictive analytics, and assessment of vaccination efficiency. The findings indicate the superior capability of Tableau in processing epidemiological big data with optimal performance metrics. Temporal investigation identified recurring patterns with different wave characteristics, while geographical mapping exposed the epicenters of transmission and propagation paths. The forecasting model achieved high precision at near-term horizons (MAPE 8.45% for 7-day prediction). Vaccination evaluation displayed a constructive correlation between coverage levels and the suppression of incidence. Analysis of user experience confirmed preferences for an interface that is user-friendly with sophisticated analytical capabilities. This study contributes academically by enriching the literature on health data visualization and practically by offering a dashboard model that supports real-time public health decision-making.

##plugins.themes.bootstrap3.article.details##

How to Cite
Tantowi, R., Calvin, C., & Siregar, S. D. (2025). Covid-19 data visualization using tableau. Indonesia Accounting Research Journal, 13(1), 98–104. https://doi.org/10.35335/iacrj.v13i1.523
References
Clarkson, M. D. (2023). Web-Based COVID-19 Dashboards and Trackers in the United States: Survey Study. JMIR Human Factors, 10. https://doi.org/10.2196/43819
Elfrida Wunu, M., & Yulian Pamuji, F. (2023). Perancangan Visualisasi Data Covid-19 di Indonesia Menggunakan Tableau. Seminar Nasional Sistem Informasi, September. www.kaggle.com
Inonu, O. Y., & Magda, K. (2025). Analisis Kinerja Algoritma Random Forest Dengan Model Machine Learning Pada Dataset Penyakit Diabetes. 15(1), 1–7.
M. Syam, H., Marzuki, M., & Yanuar, D. (2021). Persepsi Komunikasi Risiko Covid 19 Masyarakat Warung Kopi di Kota Banda Aceh. Communicatus: Jurnal Ilmu Komunikasi, 5(2), 141–160. https://doi.org/10.15575/cjik.v5i2.15136
Mujahidah, N., Raudhah, P. N., Gusman, R. R. A., & Nurullah, A. (2025). Responsibility Accounting Di Era Digital: Tantangan Dan Peluang Dalam Manajemen Modern. Jurnal Semesta Ilmu Manajemen Dan Ekonomi, 1(4), 672–689. https://doi.org/10.71417/j-sime.v1i4.410
Mustikaningsih, W. (2023). Kajian Kebijakan Vaksinasi Terhadap Angka Penurunan Corona Virus 19 Berbasis Big Data Tableau Analisis Di Indonesia 2023. Restorica: Jurnal Ilmiah Ilmu Administrasi Negara Dan Ilmu Komunikasi, 9(2), 16–28. https://doi.org/10.33084/restorica.v9i2.6046
Novany, A. A., Hartama, D., Lubis, M. R., Tambunan, H. S., & Syajidan, I. (2023). Analisa Visualisasi Data Perkembangan Covid-19 Menggunakan Tableau Big Data Dengan Metode Forecasting. Prosiding Seminar Nasional Teknologi Komputer Dan Sains, 1(1), 631–639. https://covid19.sumutprov.go.id/.
Nugraha, A. A., Rahim, A., Achmad, A. F., Nurdy, A. H., Prayoga, E. A., & Yahya, M. A. (2023). Analisis Data Menggunakan Tools Tableau Untuk Visualisasi Data Peserta Tkk Pada Dashboard Bina Konstruksi. Madani: Jurnal …, 1(11), 823–828. https://jurnal.penerbitdaarulhuda.my.id/index.php/MAJIM/article/view/1306%0Ahttps://jurnal.penerbitdaarulhuda.my.id/index.php/MAJIM/article/viewFile/1306/1360
Nuraini, S. S., & Romadhoni, A. M. (2025). Pemanfaatan Visualisasi Data dalam Business Intelligence untuk Strategi Bisnis Perusahaan Retail.
Pala, D., Parimbelli, E., Larizza, C., Cheng, C., Ottaviano, M., Pogliaghi, A., Đukić, G., Jovanović, A., Milićević, O., Urošević, V., Cerchiello, P., Giudici, P., & Bellazzi, R. (2022). A New Interactive Tool to Visualize and Analyze COVID-19 Data: The PERISCOPE Atlas. International Journal of Environmental Research and Public Health, 19(15). https://doi.org/10.3390/ijerph19159136
Pang, M. F., Liang, Z. R., Cheng, Z. Da, Yang, X. P., Wu, J. W., Lyu, K., Xi, J. J., Li, Z. J., Shi, G. Q., Zhang, Y. P., Gao, G. F., Qi, X. P., & Dong, X. P. (2021). Spatiotemporal visualization for the global COVID-19 surveillance by balloon chart. Infectious Diseases of Poverty, 10(1), 1–8. https://doi.org/10.1186/s40249-021-00800-z
Ramadhan, E., & Voutama, A. (2025). Visualisasi Prediksi Penjualan Game Di Dunia Menggunakan Power Bi. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6353
Saadah, M., Prasetiyo, Y. C., & Rahmayati, G. T. (2022). Strategi Dalam Menjaga Keabsahan Data Pada Penelitian Kualitatif. Al-’Adad : Jurnal Tadris Matematika, 1(2), 54–64. https://doi.org/10.24260/add.v1i2.1113
Tasbi, S. O., Manggas, D. N., Dhadho, W. V. D., Takaeb, E. L., & Marni, M. (2025). Tantangan Penggunaan Media Massa Dalam Kesehatan Masyarakat Di Era Digital. Triwikrama: Jurnal Multidisiplin Ilmu Sosial, 8(1), 11–20.
Tasrif. (2020). Dampak Covid 19 Terhadap Perubahan Struktur Sosial Budaya dan Ekonomi. EduSociata: Jurnal Pendidikan Sosiologi, 3(1), 88–109
Dixon, B. E., et al.Leveraging data visualization and a statewide dashboard for COVID-19 surveillance in Indiana (Tableau-based dashboard for public health situational awareness)
Laituri, M. The Disappearance of COVID-19 Data Dashboards: a review of accessibility and geospatial visualization use in COVID-19 dashboards — menyoroti sifat sementara dashboard dan rendahnya penggunaan visualisasi geospasial (hanya 17%).
Ofori, M. A., et al. Visual communication of public health data: a scoping review — merangkum teknik dan tools visualisasi data kesehatan masyarakat
Arleo, A., Borgo, R., Kohlhammer, J., et al. Reflections on the Use of Dashboards in the COVID-19 Pandemic — wawancara dengan pembuat dashboard dan pelajaran desain visualisasi krisis
Jeon, D. H., Lee, J. K., Dhaubhadel, P., & Kuhlman, A. Visualization Tool: Exploring COVID-19 Data — mengenalkan tool visualisasi komprehensif dengan peta “Surprising Map” berbasis Bayesian
Pappu, A. R., et al. Tracking COVID-19 trends in communities with low... — menggabungkan kasus klinis dan data dari limbah (“wastewater-based”) di area perumahan mahasiswa
Crisan, A. The Importance of Data Visualization in Combating a Pandemic — menyoroti volume data pandemi dan peran visualisasi dalam memahaminya
Zhang, Y. Visualization Design Practices in a Crisis — studi kualitatif kepada pembuat dashboard di lembaga pemerintah dan media tentang praktik desain krisis
Li, X., Wang, H., Chen, C., & Grundy, J. An Empirical Study on How Well Do COVID-19 Information Dashboards Serve Users' Information Needs — menelaah kebutuhan informasi pengguna vs isi dashboard COVID-19
Talagala, T. S., & Shashikala, R. Interactive Dashboard to Monitor the COVID-19 Outbreak and Vaccine Administration (Sri Lanka) — contoh pengembangan dashboard interaktif untuk kasus dan vaksinasi
Arleo, A., Borgo, R., Kohlhammer, J., et al. (2025). Reflections on the Use of Dashboards in the COVID-19 Pandemic.